МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Def

Заведующий кафедрой Аналитической химии Селеменев В.Ф.

<u>15</u>.<u>06</u>.20<u>18</u> г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Б1.В.03 Современные методы анализа биологических средКод и наименование дисциплины в соответствии с Учебным планом

Семестр: 4

8. Учебный год: 2019 / 2020

9. Цели и задачи учебной дисциплины:

Целью преподавания дисциплины является обучение студентов теоретическим и практическим основам физико-химических методов анализа биологических сред с применением современного аналитического оборудования.

Задачи дисциплины:

- изучить теоретические и практические основы физико-химических методов анализа, их достоинства и недостатки;
- овладеть практическими приемами физико-химических методов анализа и освоить способы обработки результатов аналитических определений.
- **10. Место учебной дисциплины в структуре ООП:** учебная дисциплина «Современные методы анализа биологических сред» относится к Базовому блоку (Б1) вариативной части дисциплин по выбору подготовки специалиста по направлению 30.05.01 «Медицинская биохимия».

В результате освоения дисциплины студенты должны овладеть знаниями теоретических основ важнейших современных физико-химических методов анализа биологических сред, а также правилами работы с аналитическим оборудованием.

Изучение названого курса предполагает, что студент владеет знаниями базового профессионального цикла: органической и физической химии.

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников):

iipoi paw	программы (компетенциями выпускников).				
	Компетенция	Планируемые результаты обучения			
Код	Название				
ОПК-5	готовность к использованию	Знать: особенности объектов анализа,			
	основных физико-	основные физико-химические и иные			
	химических, математических	естественнонаучные понятия и методы			
	и иных естественнонаучных	<i>Уметь</i> : использовать лабораторное			
	понятий	оборудование, анализировать полученные			
	и методов при решении	экспериментальные результаты и планировать			
	профессиональных задач	исследование в сфере профессиональной			
		деятельности для решения новых задач;			
		воспринимать инновации в целях			
		совершенствования своей профессиональной			
		деятельности			
		Владеть: основами техники современного			
		химического эксперимента, навыками			
		аналитической работы с информацией для			
		решения профессиональных задач			

12. Объем дисциплины в зачетных единицах/час.(в соответствии с учебным планом)

— 2/72.

Форма промежуточной аттестации 4 семестр- зачет

13. Структура и содержание учебной дисциплины

13. Виды учебной работы

	Трудоемкость			
Вид учебной работы	Всего	По семестрам		
		4 семестр	№ семестра	
Аудиторные занятия	54	54		
в том числе: лекции	18	18		
практические				
лабораторные	36	36		
Самостоятельная работа	18	18		
Форма промежуточной аттестации (зачет – 0 час. / экзамен –час.)	0	0		
Итого:	72	72		

13.1. Содержание дисциплины

Nº	Наиманаранна постала					
п/п	Наименование раздела дисциплины	Содержание раздела дисциплины				
		1. Лекции				
1.1	Методы исследования состояния вещества в растворах	Биологические жидкости человека. Особенности пробоподготовки. Адсорбция и десорбция (сорбенты и растворители). Диализ, центрифугирование, ультрафильтрация, ультрафорез				
1.2	Хроматографические методы анализа. Газовая хроматография	Классификация хроматографических методов анализа. Хроматографические параметры. Газовая хроматография. Характеристики удерживания, коэффициенты распределения. Процессы разделения в газовой фазе. Схема устройства газового хроматографа: блок ввода и испарения пробы, колонки, термостаты, детекторы. Подвижные и неподвижные фазы в газовой хроматографии. Применение газовой хроматографии при анализе биологических сред				
1.3	Газо-жидкостная хроматография. Жидкостная хроматография	Газо-жидкостная хроматография. Подвижные и неподвижные фазы в газо-жидкостной хроматографии. Жидкостная хроматография. Высокоэффективная жидкостная хроматография (ВЭЖХ). Размер частиц носителя. Аппаратура в методе жидкостной хроматографии. Подвижные и неподвижные фазы. Применение жидкостной и газо-жидкостной хроматографии при анализе биологических сред				
1.4	Ионообменная и гель- хроматография Плоскостная хроматография	Жидкостно-адсорбционная хроматография. Ионообменная хроматография. Ионная хроматография с использованием подавляющей колонки. Гель-хроматография. Плоскостная хроматография (тонкослойная и бумажная). Нанесение проб, детектирование. Качественный и количественный анализ. Сверхкритическая флюидная хроматография. Применение ионообменной, плоскостной и сверхкритической флюидной хроматографии при анализе биологических сред				
1.5	Электрохимические методы анализа Кондуктометрия и вольтамперометрия	Сущность электрохимических процессов. Классификация электродов, электрохимическая ячейка. Прямая потенциометрия (ионометрия) и потенциометрическое титрование. Прямая кондуктометрия и кондуктометрическое титрование. Вольтамперометрия: анодный и катодный ток. Электроды, вольтамперные кривые. Инверсионная вольтамперометрия. Применение электрохимических методов при анализе биологических сред				

1.6	Кулонометрия, полярография	Прямая кулонометрия и кулонометрическое титрование. Полярография. Полярографическая ячейка. Качественный и количественный полярографический анализ. Применение вращающихся твердых электродов
1.7	Спектроскопические методы анализа. Молекулярно-абсорбционная спектроскопия. Атомно-абсорбционная и атомно-эмиссионная спектроскопия	Молекулярно-абсорбционная спектроскопия (МАС). Атомно-абсорбционная спектроскопия (ААС). Коррекция фонового излучения. Атомно-эмиссионная спектроскопия (АЭС). Схемы оптических спектрометров в спектроскопических методах анализа. Качественный и количественный анализ. Применение спектроскопических методов при анализе биологических сред
1.8	Спектроскопия ЯМР	Спектроскопия ядерного магнитного резонанса (ЯМР). Возбуждение ядер в магнитном поле, условие магнитного резонанса. Импульсная ЯМР, химический сдвиг. Устройство ЯМР-спектрометра. Применение ЯМР
1.9	Масс-спектрометрия	Масс-спектрометрия. Устройство масс-спектрометра. Системы ввода пробы, источники ионизации, детекторы. Качественный и количественный анализ в масс-спектрометрии. Применение масс-спектрометрии при анализе биологических сред
	2	. Лабораторные работы
2.1	Методы исследования состояния вещества в растворах	Вводная беседа. Инструктаж по технике безопасности при работе в химической лаборатории. Основные методы изучения состояния вещества.
2.2	Хроматографические методы анализа. Газовая хроматография	Классификация хроматографических методов анализа. Хроматографические параметры. Подвижные и неподвижные фазы в газовой хроматографии. Решение задач.
2.3	Газо-жидкостная хроматография. Жидкостная хроматография	<u>Лабораторная работа.</u> Анализ смесей спиртов методом газо-жидкостной хроматографии.
2.4	Ионообменная и гель- хроматография Плоскостная хроматография	Лабораторная работа. Разделение смеси аминокислот методом бумажной хроматографии. Лабораторная работа. Определение содержания Na ₂ SO ₄ методом ионообменной хроматографии. Лабораторная работа. Идентификация сапонинов методом тонкослойной хроматографии.
2.5	Электрохимические методы анализа Кондуктометрия и вольтамперометрия	<u>Лабораторная работа.</u> Изучение концентрационной зависимости нитрат-селективного электрода. <u>Лабораторная работа</u> Определение ионов Fe (II) потенциометрическим титрованием дихроматом калия.
2.6	Кулонометрия, полярография	<u>Лабораторная работа.</u> Кулонометрическое определение меди (II).
2.7	Спектроскопические методы анализа. Молекулярно-абсорбционная спектроскопия. Атомно-абсорбционная и атомно-эмиссионная спектроскопия	<u>Лабораторная работа.</u> Фотоколориметрическое определение Fe (III) или Cu (II) в растворе. <u>Лабораторная работа.</u> Спектрофотометрическое определение содержания цианокобаламина (витамина В ₁₂) в растворе
2.8	Спектроскопия ЯМР	Спектроскопия ядерного магнитного резонанса (ЯМР). Устройство ЯМР-спектрометра. Применение ЯМР
2.9	Масс-спектрометрия	Устройство масс-спектрометра. Качественный и количественный анализ в масс-спектрометрии.

13.2. Темы (разделы) дисциплины и виды занятий

Nº	Наименование раздела	Виды занятий (часов)				
п/	дисциплины	Лекции	Практи-	Лаборатор-	Самостоятельная	Всего

п			ческие	ные	работа	
1.	Методы исследования	2		0	0	
	состояния вещества в растворах	2		2	2	6
2.	Хроматографические	_		_	_	_
	методы анализа. Газовая хроматография	2		2	2	6
3.	Газо-жидкостная					
	хроматография.	2		4	2	8
	Жидкостная хроматография					
4.	Ионообменная и гель-					
	хроматография	2		8	2	12
	Плоскостная хроматография					
5.	Электрохимические					
	методы анализа	2		8	2	12
	Кондуктометрия и вольтамперометрия			-		
6.	Кулонометрия,	2		4	2	8
-	полярография					Ů
7.	Спектроскопические методы анализа.					
	Молекулярно-					
	абсорбционная	0		4	0	0
	спектроскопия.	2		4	2	8
	Атомно-абсорбционная					
	и атомно-эмиссионная					
	спектроскопия			_		_
8.	Спектроскопия ЯМР	2		2	2	6
9.	Масс-спектрометрия	2		2	2	6
	Итого:	18		36	18	72

14. Методические указания для обучающихся по освоению дисциплины

Работа студентов с конспектами лекций. Студенты выполняют задания преподавателя при подготовке к занятиям, пользуясь основной и дополнительной литературой, а также интернетресурсами.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины (список литературы оформляется в соответствии с требованиями ГОСТ и используется общая сквозная нумерация для всех видов источников)

а) основная литература:

o on o bridge	i sini opar y pa.		
№ п/п	Источник		
1.	Основы аналитической химии : в 2 т. : учебник для студ. вузов, / под ред. Ю.А. Золотова . – Москва : Академия, 2014 . – Т. 2.		
2.	Кристиан Г. Аналитическая химия: в 2 кн. / Г. Кристиан. СПб.: Бином. 2009.		
3.	Харитонов Ю.А. Аналитическая химия (аналитика): в 2-х кн. / Ю.А. Харитонов М. : Высш. шк., 2008.		

б) дополнительная литература:

№ п/п	Источник	
4.	Кнорре Д.Г. Биологическая химия / Д.Г. Кнорре, С.Д. Мызина. – М.: Высш.шк., 2000.	
5.	Биохимия человека / Р. Марри и др. – М.: Мир, 1993. Т.1-2.	
6.	Белова Е.В. Физико-химические методы исследования в медицине и биологии: учебное пособие / Е.В. Белова, К.Э. Герман, А.В. Афанасьев, О.И. Слюсар, Т.А. Иванова; Медицинский университет Реавиз. – Москва, Издательство «Граница», 2016.	
7.	Короткова Е.И. Физико-химические методы исследования и анализа: учебное пособие / Е.И. Короткова, Т.М. Гиндуллина, Н.М. Дубова, О.А. Воронова; Томский политехнический	

_		
		2011
	I университет. — Гомск: Изд-во Гомского политехнического университета.	2011
1	y in bepointer. Tower, viola be remercial neutral recreate y in bepointera,	2011.

в) информационные электронно-образовательные ресурсы:

№ п/п	Ресурсы Интернет	
8.	<u>www.lib.vsu.ru</u> – 3HБ ВГУ	
9.	«Аналитика-Мир профессионалов» <u>http://www.anchem.ru/</u>	
10.	Интернет-ресурсы по методам химического анализа - http://www.rusanalytchem.org	

16. Перечень учебно-методического обеспечения для самостоятельной работы

···cb	c tens y teorio me rodu teckoro occene tenun din edmoctori ensilon pacorsi				
№ п/п	Источник				
1	Васильева В.И. Спектральные методы анализа. Практическое руководство: учебное пособие / под ред. В.Ф. Селеменева, В.Н. Семенова / В.И. Васильева, О.Ф. Стоянова, И.В. Шкутина, С.И. Карпов, В.Ф. Селеменев, В.Н. Семенов СПб.: "ЛАНЬ", 2014 416 с. Соколовский А.Е. Физико-химические методы анализа: учеб. пособие / А.Е. Соколовский, Е.В. Радион Минск: БГТУ, 2007 128 с.				
2					
3	Сумина Е.Г. Тонкослойная хроматография. Теоретические основы и практическое применение / Е.Г. Сумина, С.Н. Штыков, Н.В. Тюрина Саратов: изд-во Саратовского университета, 2002 108 с.				
4	Крысанова Т.А. Физико-химические методы анализа природных соединений: хроматография и спектроскопия / Т.А. Крысанова, Д.Л. Котова, В.А. Крысанов, А. Н.Зяблов, В.Ф. Селеменев Воронеж: ИПЦ "Научная книга", 2016 62 с.				

17. Информационные технологии, используемые для реализации учебной дисциплины, включая программное обеспечение и информационно-справочные системы (при необходимости)

ноутбук Dell Inspiration, мультимедийный проектор EPSON

18. Материально-техническое обеспечение дисциплины:

(при использовании лабораторного оборудования указывать полный перечень, при большом количестве оборудования можно вынести данный раздел в приложение к рабочей программе)

- 1. Мерная посуда
- 2. Муфельная печь
- 3. Аналитические весы
- 4. Сушильный шкаф
- 5. pH-метр- PH-340
- 6. Иономер ЭВ-74
- 7. Фотоколориметр КФК-2
- 8. Пламенный анализатор жидкости ПАЖ-1
- 9. Спектрофотометры СФ-46 и Shimadzu UV-1800
- 10. Газовый хроматограф
- 11. Жидкостный хроматограф ХРОМ-4
- 12. ИК спектрофотометр «Инфралюм ФТ-02»
- 13. Установки для кулонометрического титрования
- 14. Установки для потенциометрического титрования

19. Фонд оценочных средств:

19.1. Перечень компетенций с указанием этапов формирования и планируемых результатов обучения

Код и содержание	Планируемые результаты	Этапы формирования	
под и оодоржание	Tistating your bio pooys is tarbi	O rantis формирования	
компетенции (или	обучения (показатели	компетенции (разделы (темы)	ФОС*

химических, математических и иных естественнонаучных понятий и методов при решении профессиональных задач Туметь: использовать лабораторное оборудование, анализировать полученные экспериментальные результаты и планировать исследование в сфере профессиональной деятельности для решения новых задач; воспринимать инновации в целях совершенствования своей профессиональной	рах. рматографические методы а. Газовая хромато- ь. Кулонометрия,	Устный опрос (коллоквиум №1).
совершенствования своей профессиональной	графия. ектроскопия ЯМР. сс-спектрометрия. Газо-жидкостная ография. Жидкостная ография. Монообменная и гель- ография. Плоскостная ография.	Устный опрос (коллоквиум №2).
современного химического анализ эксперимента, навыками вольта аналитической работы с 1.7 Сп информацией для решения анализ	мперометрия. ектроскопические методы	Устный опрос (коллоквиум №3).

19.2 Описание критериев и шкалы оценивания компетенций (результатов обучения) при промежуточной аттестации

Для оценивания результатов обучения на зачете используются следующие показатели:

- 1) знание учебного материала дисциплины;
- умение применять теоретические знания для решения практических задач;
 владение теоретическими основами дисциплины, способность иллюстрировать ответ примерами, фактами, данными научных исследований.

Для оценивания результатов обучения на зачете используется шкала: «зачтено», «не зачтено».

Оценка	Критерии оценок
Зачтено	Полное соответствие ответа обучающегося базовому уровню освоения необходимой компетенции. Продемонстрировано знание теоретических основ дисциплины, умение применять теоретические знания для решения практических задач, студент полностью выполнил программу лабораторных занятий.
Не зачтено	Неудовлетворительное соответствие ответа обучающегося базовому уровню освоения необходимой компетенции. У студента отсутствует знание теоретических основ дисциплины, программа лабораторных занятий выполнена частично.

19.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций в процессе освоения образовательной программы

19.3.1 Перечень вопросов к дифференцируемому зачету:

- 1. Биологические жидкости человека. Особенности пробоподготовки.
- 2. Адсорбция и десорбция (сорбенты и растворители). Диализ, центрифугирование, ультрафильтрация, ультрафорез.
 - 3. Классификация хроматографических методов анализа. Хроматографические параметры.
- 4. Газовая хроматография. Характеристики удерживания, коэффициенты распределения. Процессы разделения в газовой фазе.
- 5. Схема устройства газового хроматографа: блок ввода и испарения пробы, колонки, термостаты, детекторы. Подвижные и неподвижные фазы в газовой хроматографии. Применение газовой хроматографии при анализе биологических сред.
- 6. Газо-жидкостная хроматография. Подвижные и неподвижные фазы в газо-жидкостной хроматографии.
- 7. Жидкостная хроматография. Высокоэффективная жидкостная хроматография (ВЭЖХ). Размер частиц носителя. Аппаратура в методе жидкостной хроматографии. Подвижные и неподвижные фазы. Применение жидкостной и газо-жидкостной хроматографии при анализе биологических сред.
- 8. Жидкостно-адсорбционная хроматография. Ионообменная хроматография. Ионная хроматография с использованием подавляющей колонки.
 - 9. Гель-хроматография.
- 10. Плоскостная хроматография (тонкослойная и бумажная). Нанесение проб, детектирование. Качественный и количественный анализ.
 - 11. Сверхкритическая флюидная хроматография.
- 12. Применение ионообменной, плоскостной и сверхкритической флюидной хроматографии при анализе биологических сред.
- 13. Сущность электрохимических процессов. Классификация электродов, электрохимическая ячейка. Прямая потенциометрия (ионометрия) и потенциометрическое титрование.
- 14. Прямая кондуктометрия и кондуктометрическое титрование. Вольтамперометрия: анодный и катодный ток. Электроды, вольтамперные кривые. Инверсионная вольтамперометрия. Применение электрохимических методов при анализе биологических сред.
 - 15. Прямая кулонометрия и кулонометрическое титрование.
- 16. Полярография. Полярографическая ячейка. Качественный и количественный полярографический анализ. Применение вращающихся твердых электродов.
- 17. Молекулярно-абсорбционная спектроскопия (МАС). Атомно-абсорбционная спектроскопия (ААС). Коррекция фонового излучения.
- 18. Атомно-эмиссионная спектроскопия (АЭС). Схемы оптических спектрометров в спектроскопических методах анализа. Качественный и количественный анализ. Применение спектроскопических методов при анализе биологических сред.
- 19. Спектроскопия ядерного магнитного резонанса (ЯМР). Возбуждение ядер в магнитном поле, условие магнитного резонанса. Импульсная ЯМР, химический сдвиг. Устройство ЯМР-спектрометра. Применение ЯМР.
- 20. Масс-спектрометрия. Устройство масс-спектрометра. Системы ввода пробы, источники ионизации, детекторы. Качественный и количественный анализ в масс-спектрометрии. Применение масс-спектрометрии при анализе биологических сред

19.3.2 Перечень вопросов коллоквиумов (устный опрос): Коллоквиум №1.

- 1. Биологические жидкости человека. Особенности пробоподготовки.
- 2. Адсорбция и десорбция. Диализ, центрифугирование, ультрафильтрация, ультрафорез.
- 3. Классификация хроматографических методов анализа. Хроматографические параметры.
- 4. Газовая хроматография. Характеристики удерживания, коэффициенты распределения.
- 5. Схема устройства газового хроматографа: блок ввода и испарения пробы, колонки, термостаты, детекторы. Подвижные и неподвижные фазы в газовой хроматографии.
- 6. Спектроскопия ядерного магнитного резонанса (ЯМР). Возбуждение ядер в магнитном поле, условие магнитного резонанса. Устройство ЯМР-спектрометра. Применение ЯМР.
- 7. Масс-спектрометрия. Устройство масс-спектрометра. Системы ввода пробы, источники ионизации, детекторы.

Коллоквиум №2.

1. Газо-жидкостная хроматография. Подвижные и неподвижные фазы в газо-жидкостной хроматографии.

- 2. Жидкостная хроматография. Высокоэффективная жидкостная хроматография (ВЭЖХ). Аппаратура в методе жидкостной хроматографии. Подвижные и неподвижные фазы.
 - 3. Жидкостно-адсорбционная хроматография. Ионообменная хроматография.
 - 4. Ионная хроматография с использованием подавляющей колонки. Гель-хроматография.
- 5. Плоскостная хроматография (тонкослойная и бумажная). Нанесение проб, детектирование. Качественный и количественный анализ.
 - 6. Сверхкритическая флюидная хроматография.

Коллоквиум №3.

- 1. Сущность электрохимических процессов. Классификация электродов, электрохимическая ячейка.
- 2. Прямая потенциометрия (ионометрия) и потенциометрическое титрование.
- 3. Прямая кондуктометрия и кондуктометрическое титрование.
- 4. Вольтамперометрия: анодный и катодный ток. Электроды, вольтамперные кривые.
- 5. Прямая кулонометрия и кулонометрическое титрование.
- 6. Полярография. Качественный и количественный полярографический анализ.
- 7. Молекулярно-абсорбционная спектроскопия (МАС). Атомно-абсорбционная спектроскопия (ААС).
- 8. Атомно-эмиссионная спектроскопия (АЭС). Аппаратура, качественный и количественный анализ.

19.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей и промежуточной аттестаций.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: устного опроса, контроля выполнения лабораторных работ. Критерии оценивания приведены выше.

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний и практические задания, позволяющие оценить степень сформированности умений и навыков. Критерии оценивания приведены выше.